DPP - 21 (Theometry \& Calorimetry)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/54

Video Solution on YouTube:-

Written Solution on Website:-

https://youtu.be/DgZx_S4dXhU

https://physicsaholics.com/note/notesDetalis/79

Q 1. 1 kg of ice at $0^{\circ} \mathrm{C}$ is mixed with 1.5 kg of water at $45^{\circ} \mathrm{C}$ [latent heat of fusion $=80$ $\mathrm{cal} / \mathrm{g}]$. Then-
(a) the temperature of the mixture of $0^{\circ} \mathrm{C}$
(b) mixture contains 156.25 g of ice
(c) mixture contains 843.75 g of ice
(d) the temperature of the mixture is $15^{\circ} \mathrm{C}$

Q 2. It takes 15 minutes to raise a certain amount of water $0^{\circ} \mathrm{C}$ to boiling point using an electric heater. After this one hour and twenty minutes are required in the same conditions to convert all the water into vapour -
(a) latent heat of vaporization is 530 cal
(b) latent heat of vaporization is 533 cal
(c) mass of water is 1 kg
(d) latent heat of vaporization is 540 cal

Q 3. Steam at $100^{\circ} \mathrm{C}$ passed into a calorimeter of water equivalent 10 g containing 94 gm of water and 10 g of ice at $0^{\circ} \mathrm{C}$. The temperature of the calorimeter and contents rise by $5^{\circ} \mathrm{C}$. The amount of steam passed is
(a) 1 g
(b) 2 g
(c) 3 g
(d) 4 g

Q 4. An electrically heating coil is placed in a calorimeter containing 360 g of $\mathrm{H}_{2} \mathrm{O}$ at $10^{\circ} \mathrm{C}$. The coil consumes energy at the rate of 90 W . The water equivalent of calorimeter and the coil is 40 g . The temperature of water after 10 minutes will be
(a) $42.14^{\circ} \mathrm{C}$
(b) $32.14^{\circ} \mathrm{C}$
(c) $22.14^{\circ} \mathrm{C}$
(d) $52.14^{\circ} \mathrm{C}$

Q 5. To raise the temperature of 100 g of ice at $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ by a heater of 420 W the time required is
(a) 90 min
(b) 90 seconds
(c) 21.2 min
(d) 21.2 seconds

Q 6. A lump of 0.1 kg of ice at $-10^{\circ} \mathrm{C}$ is put in 0.15 kg of water at $20^{\circ} \mathrm{C}$. How much water will be found in the mixture when it has reached thermal equilibrium? (Specific heat of ice $=2.1 \mathrm{~kJ} / \mathrm{kg}$; Latent heat of ice $=336 \mathrm{~kJ} / \mathrm{kg}$)

Q 7. If water at $0^{\circ} \mathrm{C}$, kept in a container with an open top, is placed in a large evacuated chamber,
(a) all the water will vaporize
(b) all the water will freeze
(c) part of the water will vaporize and the rest will freeze
(d) ice, water and water vapour will be formed and reach equilibrium at the triple point.

Q 8. A substance of mass M kg requires a power input of P watts to remain in the molten state at its melting point. When the power source is turned off, the sample completely solidifies in time t seconds. The specific latent heat of fusion of the substance is
(a) Pt
(b) Pt / M
(c) PtM
(d) PM/t

Q 9. Heat is supplied to a certain homogenous sample of matter, at a uniform rate. Its temperature is plotted against time, as shown. Which of the following conclusions can be drawn?

(a) Its specific heat capacity is greater in the solid state than in the liquid state
(b) Its specific heat capacity is greater in the liquid state than in the solid state.
(c) Its latent heat of vaporization is greater than its latent heat of fusion.
(d) Its latent heat of vaporization is smaller than its latent heat of fusion.

Q 10. When ice melts at zero degree Celsius
(a) its molecular kinetic energy increases
(b) its molecular potential energy increases
(c) its kinetic energy decreases
(d) None of these

Q 11. 100 gram water at $0^{\circ} \mathrm{C}$ is placed in a large container in which there is no air. Some water converted to steam and rest converts in to ice. Find mass of ice formed ?
(a) 13 g
(b) 50 g
(c) 87 g
(d) 33 g

Q 12. mass of empty cylinder is 14 kg Mass of fully filled LPG cylinder is 30 kg and pressure inside it is P .. find pressure inside cylinder when mass of cylinder reduces to 22 kg ?
(a) P
(b) 2 P
(c) $\mathrm{P} / 2$
(d) $\mathrm{P} / 3$

Q 13. $\mathrm{m}_{1} \mathrm{gm}$ ice at $0^{\circ} \mathrm{C}, \mathrm{m}_{2} \mathrm{gm}$ water at $50^{\circ} \mathrm{C}$ and $\mathrm{m}_{3} \mathrm{gm}$ steam at $100^{\circ} \mathrm{C}$ are mixed together then the correct alternative is -
(a) Temperature of mixture is $0^{\circ} \mathrm{C}$ if $\mathrm{m}_{1} \frac{5}{8} \frac{5}{8} \mathrm{~m}_{2}+8 \mathrm{~m}_{3}$.
(b) Temperature of mixture is $100^{\circ} \mathrm{C}$ if $\mathrm{m}_{3}{ }^{3} \frac{5}{54} \mathrm{~m}_{2}+\frac{m_{1}}{3}$
(c) Temperature of mixture is $50^{\circ} \mathrm{C}$ if $13 \mathrm{~m}_{1}=59 \mathrm{~m}_{3}$
(d) Temperature of mixture is $50^{\circ} \mathrm{C}$ if $18 \mathrm{~m}_{1}=59 \mathrm{~m}_{3}$

Q 14. A cube of iron (density $=8000 \mathrm{~kg} / \mathrm{m}^{3}$, specific heat capacity $=470 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$) is heated to a high temperature and is placed on a large block of ice at $0^{\circ} \mathrm{C}$. The cube melts the ice below it, displaces the water and sinks. In the final equilibrium position, its upper surface just goes inside the ice. Calculate the initial temperature in degree celcius of the cube. Neglect any loss of heat outside the ice and the cube. The density of ice $=$ $900 \mathrm{~kg} / \mathrm{m}^{3}$ and the latent heat of fusion of ice $=3.36 \times 10^{5} \mathrm{~J} / \mathrm{kg}$.

Answer Key

$\text { Q. } 1 \text { a,b }$	$0.2 \mathrm{~b}$	$\text { Q. } 3 \mathrm{~b}$	$0.4 \mathrm{a}$	Q. 5 b
$\text { Q. } 6$	$\text { Q. } 7 \mathrm{c}$	$\mathbf{Q . 8 ~ b}$	Q. $9 \mathrm{~b}, \mathrm{~d}$	Q. 10 b
$\text { Q. } 11 \mathrm{c}$	$0.12 \mathrm{a}$	$\mathbf{Q . 1 3} \underset{a, b, c}{ }$	Q. 14080	

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
x Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

Written Solution

DPP-2 Calorimetry
By Physicsaholics Team

1 Ky ice at $0^{\circ} \mathrm{C}$
+1.5 Kj water at $45^{\circ} \mathrm{C}$
Let final temp is T. where $0<\pi<45^{-}$
Heat loosed by ompart $=$ Heat absorbed by other

$$
\begin{aligned}
1006 \times 80+1089 \times 1(7509 & =15 \phi 16 \times 1 \times(45-T) \\
880+10 \mathrm{~T} & =675-15 \mathrm{~T} \\
25 \mathrm{~T} & =-175
\end{aligned}
$$

\Rightarrow ice will not melt compleialy. final temp $=0$

Heat loosed by 1.5 ky water $=1.5 \times 1000 \times 45$

$$
\text { muss of molted iou }=\frac{\Delta Q}{L}=\frac{15 \times 450 \phi}{8 \phi}
$$

mass of remaining $i=8=156.3 \mathrm{gm}$

Solution:2
Heat required to increase temperature from
$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ is $=m \times 1 \times 100=P \times 15 \mathrm{~min}$

Heal required for Vaporisation

$$
\begin{aligned}
=m \times L=p \times(\mathrm{hr} 20 \mathrm{~min} & =P \times 80 \mathrm{~min} \\
\Rightarrow \quad \frac{100}{L}=\frac{15}{80}(\mathrm{~L} & =\frac{8000}{15} 3 \mathrm{cal} / \mathrm{kg} \\
& =533.3 \mathrm{cal} / \mathrm{kg}
\end{aligned}
$$

(B)

Solution:3
Heat required to rise temp. of 10 g ice by $5^{\circ} \mathrm{C}$

$$
=m L+m 8 \Delta T=10 \times 80+10 \times 1 \times 55=850 \mathrm{cal}
$$

Heat required to rise temp. oof $94 g$ water by $s^{\prime \prime}$

$$
=94 \times 1 \times 5=k 70 \text { Gel }
$$

Heat required to rise tempoof Calorimeter $=11 D D D$ $=10 \times 1 \times 5=50 \operatorname{col}$ total Heat required $=1270 \mathrm{cal}$

Heat released by agram steam

$$
\begin{aligned}
& =m \times 540+m \times 1 \times 95 \\
& =645 \mathrm{~m}
\end{aligned}
$$

$$
645 m=1270
$$

$n=2$ gram

Solutions

$$
\begin{aligned}
& \text { Total wafer }+ \text { cutter equivalent }=360+40 \\
& =400 \mathrm{gram} \\
& \text { Total that produced }=90 \times 10 \times 60 \\
& =540005 \\
& \Delta Q=\sin \Delta T \\
& \Delta T=\frac{54016}{4 \phi 6 \times 4.2}=32.14^{\circ} \mathrm{C} \\
& T_{f}=T_{i}+\Delta T=10+32.14 \\
& T_{f}=42.14^{\circ} \mathrm{C}
\end{aligned}
$$

Solution:5

$$
\begin{aligned}
& \text { Heat required to melt ice }=100 \times 80 \\
&=8000 \mathrm{Cal} \\
& 1 " \quad \text { " increase teal }=100 \times 1 \times 10 \\
&=1000 \\
& \text { Total Heat required } 9000 \mathrm{Cal}
\end{aligned}
$$

$$
\text { Heat produced by hater }=4204 t=9000 \times 4.2
$$

$$
\Delta t=g 0 \mathrm{Sec}
$$

Ans. (B)

Let m gram in melts:
Heat supplied by first sample $=$ Heat absorbed by other

$$
\begin{gathered}
.15 \times 4.2 \times 20=1 \times 2.1 \times 10+\mathrm{m} \times 336 \\
\square 12.6=2.0+336 \mathrm{~m} \\
\mathrm{~m} \sqrt{\mathbb{D}} .031 \mathrm{kgram}
\end{gathered}
$$

$$
\begin{aligned}
\text { final mass of crater } & =.15+.031 \\
& =.181 \mathrm{~kg}
\end{aligned}
$$

Solution:7
When water is placed in large evacuated chamber, is starts conversion in to Vapour by taking energy from rest water. Due to this some cater Converts th to ice

To remain in molten state
Power absorbed $=$ Power radiated $=P$
Heat loss for solidification =NL $=P t$

$$
L=\frac{P t}{D M}
$$

Ans. (B)

Solution:9

$$
\begin{aligned}
& \text { n. } \quad \Delta Q=m s \Delta T=P t \\
& \Rightarrow \quad \frac{\Delta T}{t}=\frac{P}{m s}
\end{aligned}
$$

high Slope \Rightarrow low \&
(B) is Correct

$$
\begin{gathered}
\Delta Q=m L=P t \\
\Rightarrow L=P t
\end{gathered}
$$

high $t \Rightarrow$ high L.
(D) is Correct

When ice melts at zero degree Celsius its molecular potential energy increases

Solution:11 100 g watsr $\longrightarrow m g i c e+(100-m)$ rabour

$$
\begin{gathered}
m \times 8 \phi=(100-m) 54 \phi \\
8 m=5400-54 m \\
62 m=5400 \\
m=87 \text { gram }
\end{gathered}
$$

L.P.G. Cylinder Contain liquid and it's vapour. Pressure inside cylinder is Vapour pressure which depends on temperature only. Pressure n in cylinder remains Constant untie liquid

Heat released in lowering temp af colter to

$$
0^{\circ} \mathrm{C}=m_{2} \times 1 \times 50
$$

Heat released in lowering temp af steam to

$$
D^{\prime} \mathrm{C}=m_{3} \times 540+m_{3} \times 1 \times 100=640 m_{3}
$$

Heat required tornelt ice $F 80 \mathrm{~m}$,
final tern coll be $\theta^{\circ} \mathrm{C}=$

$$
\begin{aligned}
& 8 \phi m_{1} 5 \phi m_{2}+64 \phi m_{3} \\
& m_{1} \geqslant \frac{5}{8} m_{2}+8 m_{3}
\end{aligned}
$$

(A) is Correct

Heat absorbed by ice to increase temp to 100 C

$$
=80 m_{1}+100 \times 1 \times m_{1}=180 \mathrm{~m}_{1}
$$

that absored by coater to increase temp to 100 e

$$
\left.=m_{3} \times 1 \times(100-50)=50 m_{3}\right)
$$

Heat released in condensing steam $=540 \mathrm{~m}_{3}$ final temp will (be $100^{\circ} \mathrm{C}$ ib

$$
\begin{aligned}
& 54 \phi m_{3} \geqslant 18 p m_{1}+5 \phi m_{2} \\
& m_{3} \geqslant \frac{m_{1}}{3}+\frac{5}{54} m_{2}
\end{aligned}
$$

(B) is Correct
for final term $50^{\circ} \mathrm{C}$

$$
\begin{aligned}
80 m_{1}+50 \times 1 \times m_{1} & =540 m_{3}+(100-50) \times 1 m_{3} \\
130 m_{1} & =59 p / m_{3}
\end{aligned}
$$

Lat side of iron Cube isl.
mass of iron Cube $=8000 \mathrm{l}^{3}$
If initial temp. was T.

Heat loss by Cube $=8000 \mathrm{l}^{3} \times 470 \mathrm{~T}$
mass of ice molted $=900 \mathrm{~b}^{3}$
Heat absorbed by ice $1 D=3.36 \times 10^{5} \times 900 l^{3}$
how $80 \phi \phi l \beta \times 60 \mathrm{~T}=3.36 \times 999 \times 10^{5} \mathrm{~d}^{3}$

$$
T=80
$$

Ans. 080

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/54
https://youtu.be/DgZx_S4dXhU
https://physicsaholics.com/note/notesDetalis/79

Chalo Nikis

